
Naming and Security
NDN Services for
Tactical Networks

Tutorial

Security in
File Transfer
• We have file transfer application that by definition needs to

have
• files must come only from the right people (authentication)
• files can be read only by authorized people (confidentiality)
• names of the files (and general context) should be revealed only to

authorized people (name confidentiality)

• All of these in the face
• multiparty file transfer (multiple publishers of different files,

multiple consumers for each of the file
• connectivity could be disrupted at any time
• communication may resume over alternative channels

2

Required Security
Properties

• Mitigate false data packet injection
• built-in data authentication
• automated key and policy management leveraging NDN naming

• Mitigate eavesdropping
• optional data encryption (for content confidentiality)
• optional name encryption (for name privacy)
• automated key and policy management leveraging NDN naming

3

Name Privacy

NDN Security

Data-Centric Confidentiality
(Name-Based Access Control, etc.)

Data-Centric Authenticity
(Trust Schema)

Data KeySigned by

Authenticity Confidentialit
y

AvailabilityName Privacy

4

Notional Tactical
Network

• File transfer
among the troops,
ships, and
aircrafts
• Lossy

environment
• May have

significant delays
• Multiple delivery

channels

5

Naming in a File
Transfer App
• Naming is part of the

application design and
configuration

• What to name
• Files
• Signing keys

• and policies
• Encryption keys

• and policies
• Application cares about

• fetching the data from
those who are
authorized to participate
within a given interest
group

/aaa/bbb/cccc/ddd/eee
Naming

Data

Naming
Encryption

Keys

Naming
Signing

Certificates

6

Naming Files

/Apps/Files/AreaA/SoldierA/timestamp/segment/…

Prefix

Application name

Interest groups
Participant Apps

Files

AreaA

SoldierA

time1

0 1 2 ...

time2 ...

SoldierB ...

AreaB ...

Chat

…

7

Data Authentication

8

Built-in Data
Authentication
• Each piece of data (a file segment)
• is signed using crypto keys

• Key itself is a data packet
• is named and signed by a “next level”

key

• The data-key-key-key-…-root key
chain
• validates integrity and authenticity of

every single piece of data
• regardless how it arrived on the

system

/<name>/data/…

/<name>/KEY/…

/<name>/KEY?...Anchor

signs

signs

9

Naming Signing
Keys

/Apps/Files/AreaA/SoliderA/KEY/<id>/…

/Apps/Files/ AreaA/KEY/<id>/…
/Apps/ AreaA/KEY/<id>/…

/Apps/ KEY/<id>/…

/Apps/Files/SoliderA/KEY/<id>/…
/Apps /SoliderA/KEY/<id>/… User keys

“Mission” keys

Base key (anchor)
10

Not Just Signature, but
Whose Key Signed It?

A valid files segment
published by a soldier
in a mission

A forged file segment

/Apps/Files/AreaA/SoliderA/KEY/<id>/… /Heisenberg/KEY

/Apps/Files/AreaA/SoldierA/timestamp
/segment/…

/Apps/Files/AreaA/SoldierA/timestamp
/segment/…

11

Defining Limits via
Namespace Design

/Apps//KEY/_id=42 Local trust anchor

AreaA

AreaB

SecretMission

SoliderA

SoldierB

SoldierC

Files

PLI

Chat

2017-02-28

2017-03-01

2017-03-02

/Apps/…/KEY/_id=12

signs

12

Relation of Data
and Keys
• /Apps as the shared trust anchor

• Cert name /Apps/KEY/<id>/…
• Securely installed out-of-band into all user devices

• Base creates mission keys signed by the trust
anchor
• /Apps/AreaA/KEY/<id>/…

• Everybody has a key (cert) signed by the
mission key
• /Apps/SoliderA/KEY/<id>/…

• A user creates a file transfer app key to sign data
• /Apps/Files/SoliderA/KEY/<id>/…

• File segments signed by app-user (mission) key

/Apps/KEY/..

signs

/Apps/AreaA/KEY/...

signs

/Apps/SoldierA/KEY/…

signs

/Apps/Files/AreaA
/SoldierA

/timestamp/segment/…

Self
signed

13

Signing Policy:
Trust Schema

(:Prefix:<>*)(:Mission:<>*)<KEY>[key-id]

/Apps/KEY/_v5

General Trust Model

Trust Model Specialization
for the App

(:Prefix:<>*)(:User:<>*)<KEY>[key-id]

(:Prefix:<>*)<Files>(:Mission:<>)(:User:<>)<><>…File segments

User key

Mission key

Anchor key

/Apps/Files/AreaA/SoldierA/timestamp/segment/…

/Apps/SoliderA/KEY/<id>/…

/Apps/AreaA/KEY/<id>/…

/Files/Policy/_v1

14

Trust Schema as an
Automation Tool

Authenticator

signed
data

public
keys

... requests for
public keys

Trust anchor

CameraVideoFeed

User

TPM

Signer

unsigned
data

signed
data

private key
operations

NDN Key
Management

Protocol

Trust anchor

CameraVideoFeed

User

15

Data Confidentiality

16

Data Confidentiality
via Encryption

• Each piece of data is encrypted
• symmetric key to encrypt content

(CK)
• 1 key for group of packets (segments

of a file)
• asymmetric key to encrypt

encryption key (KEK/KDK)
• 1 key per access group
• name can define granularity

• asymmetric keys (or other
mechanisms) to secretly distribute
decryption key
• provisioning mechanism to decrypt

symmetric keys and content

/…/symm/CK/…

/<name>/data/…

encrypted by

/…/asymm/KEK

/…/asymm/KDK

encrypted by

can decrypt

encrypted by

users’ public keys 17

Name-Based Access
Control (NAC)

• Access Controller – Base
• Creates a list of encryption/decryption

key pairs
• encryption policy

• Control whom to distribute the
corresponding decryption keys
• access policy

• Producers (Encryptors) – HMMV
• Fetch the right encryption keys to

encrypt data

• Consumers (Decryptor)
• Fetch the right decryption keys to

decrypt data

Private Key Public Key

Dec Key Enc Key

Content Key Content

18

NAC Process

Encryption Key (KEK) Decryption Key (KDK)

Public
Key

Data

Content Key (C-KEY)

Data

Decryption Key (KDK)

Content Key
(C-KEY)

Access Manager

Consumers
Data Producers

19

Naming Policies

Key Encryption Key (KEK): per file transfer group

/Apps/Mike/NAC/Files/Ships/KEK/<version>
/Apps/Mike/NAC/Files/Troops/KEK/<version>
/Apps/Mike/NAC/Files/Xyz/KEK/<version>
…

Per authorized participants Key Decryption Key (KDK)

/Apps/Mike/NAC/Files/Ships/KDK/<version>/ENCRYPTED-BY/…
…

/Apps/Mike/NAC/Files/Troops/KDK/<version>/ENCRYPTED-BY/…
…

/Apps/Mike/NAC/Files/Xyz/KDK/<version>/ENCRYPTED-BY/…
…

Access Manager

Encryption Policies

Access Policies

20

Naming
Encryption Keys

• Fetches and stores KEK for the configured with access
prefix

Interest ->
/Apps/Mike/NAC/Files/Xyz/KEK/<version>

• Generates (re-generates) symmetric Content Key (CK)
• Publishes CK data under configured namespace,

encrypted by KEK
Data:
/Apps/Files/AreaA/SoldierA/timestamp/segment/…

/ENCRYPTED-BY
/Apps/Mike/NAC/Files/Xyz/KEK/<version>

• Encrypts input data using CK,
returns encrypted content

• Exact name of the corresponding
CK data is embedded in the
encrypted content

From Access Manager / provisioned or dedicated data owner storage

Data Producers

21

Access to
Protected Data

• Fetches CK data for the name extracted from
input encrypted payload

Interest->
/Apps/Files/AreaA/SoldierA/CK/<key-id>

• Fetches KDK, name extracted from CK name + own
configured access key name

Interest->
/Apps/Mike/NAC/Files/Xyz/KDK/<version>
/ENCRYPTED-BY
/Apps/Files/SoldierA/Key/<key-id>

• Fetch the encrypted Content Data
• Get the name of the corresponding CK: CK

name is embedded in the encrypted
content

From Encryptor / from same place as data

From Access Manager / provisioned
or dedicated data owner storage

Data Consumers

name of user’s key (e.g., same as for data authentication) 22

Name Privacy

23

Name Privacy

• Privacy of names extends beyond the application current state:
• It exposes the state machine

• retrieving certain data causes retrieval of a different data
• It exposes dependencies between functionalities: sync vs. data plane
• It exposes various time parameters of the app

• (Lack of) privacy for names brings up other security concerns:
• In network targeted attacks against (particular) applications and

functionalities
• Targeted (D)DoS attacks via spurious Interests

• Producer Denial of Service, PIT exhaustion
• Content Store exhaustion
• Possible modification of forwarding plane via spurious Interests

24

Name Privacy
Considerations
• Secure Encapsulation
• General requirements
• Common approaches and tradeoffs
• Approach details
• Other Considerations

Name Signature Info
Key Locator, Signature

Meta Info
Freshness, Type, etc

Content Encryption Info
Key Locator

/public/corporate/companyA/docs/monthly_report/fin_0910519/315

/public/corporate/companyA/docs/Key/29

/public/corporate/companyA/docs/KDK/27

This exposes the domain and
character of information

This exposes application
structure and current state

This exposes key
details information

25

Encapsulation
Model
• Outer Interest carries
• encrypted inner interest

as
• new name component
• new name
• interest parameters

• information to decrypt

• Outer Data carries
• encrypted data as

content
• information to decrypt

Name Options
Lifetime, nonce, etc Signature Info

ParamsI:

Name Options
Lifetime, nonce, etc Signature Info

ParamsI:O_Name O_Options
Lifetime, nonce, etc

I:
Params

Name Options
Lifetime, nonce, etc Signature Info

ParamsI:

Name Options
Lifetime, nonce, etc Signature Info

ParamsI:O_Name O_Options
Lifetime, nonce, etc

I:
Params

26

Name Encryption
General Requirements

1. Must support Interest aggregation

2. Must support in-network data caching

3. Support real-time data fetching
• I.e. Must-be-Fresh flag in Interest, FreshnessPeriod in Data

packet

4. In-network name discovery/routing
• I.e. fetching by name prefix, instead of a full data packet

name

I: /o_name1

I: /name/item

PIT

I: /name/item I: /name/item

I: /o_name1

I: /o_name1

Encapsulation
Good (Desired)

1

2

3

I: /name/item
I: /name/item

I: /name/item

PIT

No Encapsulation

1

2

3

I: /o_name1

I: /o_name2

I: /name/item

PIT

I: /name/item I: /name/item

I: /o_name1 I: /name/item

I: /o_name2

Encapsulation
Bad (Unless explicitly desired)

1

2

3

4 D: /name/item
D: /o_name1

4

Implies one-to-one
mapping between inner
name and outer name

27

Encryption Function
For NDN Names: A
Tree View

• NDN Namespaces can be represented as trees where nodes hold name components
• A Name is represented by a path between the root node and a leaf node

• Sometimes to an intermediary node (see special case later)
• Encapsulation entails defining a mapping function between two such trees
• Encryption entails defining such a mapping that additionally preserves the

confidentiality of the inner names
• Cryptographic one way transformation

/a/

b/ c/

d/ e f/ g h/

i j k

/1/

2/ 3/

84 5 7/6

10

Inner Names Outer Names

28

/a/

b/ c/

d/ e f/ g h/

i j k

Inner Names Outer Names

C(a)

C(b) C(c)

C(d) C(e) C(f) C(g) C(h)

C(i) C(j) C(k)

Encryption Function
For NDN Names: Tree
Structure Preserving

• C(name) represents a cypher-text of a name component
• For performance reasons a cryptographic hash function might be used instead
• Instead a name component, a partial path can be used instead

• Adversary will be able to reconstruct the structure of the inner name
• Will be able to learn (quickly) the state of the application

• Network semi-friendly
• No issues with prefixing, see later

29

/a/

b/ c/

d/ e f/ g h/

i j k

/public/

Inner Names Outer Names

C(/a/b/d/i) C(/a/b/e) C(/a/b/f/j) C(/a/c/g) C(/a/c/h/k)

Encryption Function
For NDN Names: Tree
Flattening

• C(name) represents a cypher-text of a name
• For performance reasons a cryptographic hash function might be

used instead
• Adversary cannot reconstruct structure of the inner name
• Very network unfriendly
• Issues with prefixing

30

Encryption Function
For NDN Names:
Network Friendly

• C(name) represents a cypher-text of a name
• For performance reasons a cryptographic hash function might be used instead

• Hybrid solution
• Provide partial mapping between inner names and outer prefix

• Outer prefix may have variable depth/length
• Outer leaf computed based on the cypher-text of the inner name

• Mapping performed based on name schema, according to name matching rules
• Schema may support both previous alternatives

• Mapping between inner name and outer prefix uses flexible mapping that balances network friendliness with confidentiality

/a/

b/ c/

d/ e f/ g h/

i j k

Inner Names Outer Names

/public/

Outer Names

C(/a/b/d/i) C(/a/b/e) C(/a/b/f/j) C(/a/c/g) C(/a/c/h/k)

group1/ group2/ group3/

31

Encryption Function
For NDN Names:
Prefixing

• Supports prefixing for /a/b/d

/a/

b/ c/

d/ e f/ g h/

i j k

Inner Names Outer Names

/public/

Outer Names

C(/a/b/d/i)

C(/a/b/e) C(/a/b/f/j) C(/a/c/g) C(/a/c/h/k)

group1/ group2/ group3/

C(/a/b/d)

I: /a/b/d

D: /a/b/d/i

I: /public/group1/C(/a/b/d)/

D: /public/group1/C(/a/b/d)/C(/a/b/d/i)

32

Conclusion

• Data-centric security
• Leverage naming of everything
• trust schema to authorize access
• signing key management
• encryption key management

• Name (interest) privacy
• configurable trade offs

33

