
Chat Application

Notional Tactical
Network

• Two different chat
groups
• Between the three

ships
• Between the carrier

and the troops
• Loss cannot be

tolerated
• In order delivery is

important
• Can tolerate some

delay

2

Chat group1

Chat
group2

Chat Naming

• As part of the app design/configuration
• What to name:
• Chatroom
• Chat data produced

by users
• Encryption keys
• Signing certificates

• App cares about who’s in the room, and what’s the latest
data each has produced
• User locations may change over time.
• Direct end-to-end paths between producer-consumers may not

exist
3

Chat Naming

/aaa/bbb/cccc/ddd/eee
Naming

Data

Naming
Encryption

Keys

Naming
Signing

Certificates

Naming
Chatroom

Chatroom and Data
Naming

4

/Apps/Chat/Ships/

/Apps/Chat/Troops/

Global prefix Application
name

User names: Mike, John, Nancy

Ship names: Ajex, Gain, Tide

Chatroom
name

user name

/Apps/Mike/Chat/Troops/seq#

Chatroom name

Data name

Trust Anchor and Keys

• /Apps as the shared trust anchor
• Identified by a self-signed versioned certificate
• Cert name: /Apps/KEY/_v5
• Securely installed out-of-band into all user devices

• Every entity in the network has a cert signed by
the trust anchor
• /Apps/Mike/KEY/_v13

• A user produces a chat-app key to sign data

• Each chat created by a room manager
• The manager creates key encryption (KEK)/key

decryption key (KDK)
• Publishes and signs KEK

• /Apps/Mike/NAC/Chat/Ships/KEK/_v8
• Encrypts KDK with invited participants public keys and

shares with them
• /Apps/Mike/NAC/Chat/Ships/KDK/_v8

/ENCRYPTED-BY/Apps/John/KEY/_v42

5

/Apps/KEY/_v5

signs

/Apps/Mike/KEY/_v13

signs

/Apps/Chat/Ships/SYNC/_s11
/Apps/Mike/Chat/Ships/_v0

/Apps/Mike/NAC/Chat/Ships/…

Self
signed

Chat group Manager

Managing Access Policies

6

• Encryption policies using public key (KEK) – per created

chat group

/Apps/Mike/NAC/Chat/Ships/KEK/<version>

/Apps/Mike/NAC/Chat/Troops/KEK/<version>

/Apps/Mike/NAC/Chat/Xyz/KEK/<version>

…

• Authorizes participants publishing encrypted version of private key (KDK) – per group

and per participant

/Apps/Mike/KEK/Chat/Ships/KEY/<version>/ENCRYPTED-BY/…

…

/Apps/Mike/KEK/Chat/Troops/KEY/<version>/ENCRYPTED-BY/…

…
/Apps/Mike/KEK/Chat/Xyz/KEY/<version>/ENCRYPTED-BY/…

…

Access Manager

/Apps/NAC/PLI/Global/KEK/<key-id>

Example of Trust Schema
for Chat

7

User(Prefix, User)
(:Prefix:<>*)(:User:<>*)<NAC><Chat>(:Group:<>*) <KEK>[key-id]

Anchor(Prefix)
(:Prefix:<>*) (:User:<>*) <KEY>[key-id]

/Apps/KEY/_v5

General Trust Model

Trust Model Specialization
for the App

User(Prefix, User)
(:Prefix:<>*)(:User:<>*)<Chat>(:Group:<>*)<DATA><>*

User(Prefix, User)
(:Prefix:<>*)<Chat>(:Group:<>*)<SYNC><>*Sync data

Chat messages

NAC policy

User key

Anchor key

Chat: Security in Packet
Delivery
• False Interest packet injection: protected by the group key
• Interest packets can be signed

• False data packet injection: mitigated by the built-in data
authentication
• Signal interference: exhibited as packet losses
• Eavesdropping: mitigated by encryption as IP does today,

but with automated key management
• With IP, one can use named keys at app layer but no easy way to

distribute keys

8

Chatroom: Simplify App Design via
Dataset Synchronization

• Each user may produce input into the chat
• Text messages
• Image files (each file has associated metadata)

• NDN Sync keeps every user informed of the latest input
from all others in the same chatroom
• Tracking the latest data production sequence#

• Each user decides whether/when to fetch which piece of
data
• If a new piece of data is an image file: the first returned data

packet carries metadata to inform the user of the file size and
other content specifics

9

Chatroom: Simplify App Design via
Dataset Synchronization

• Different sync
nodes can be
defined in the
topology.
• Carrier needs

to sync data
from both
groups (same
with the
satellite node
connected to
it).
• UAV only

needs to sync
data from
group 2.

10

Chat group1

Chat
group2

Sync
Node

Sync
Node

Sync
Node

Sync
Node

Sync
Node

Sync
Node

Sync
Node

Sync
Node

State: A’:12, X:42, Z:12
Dataset: A’:12, X:42, Z:12

State: A:6, B:3, C:4
Dataset: A:6, B:3, C:4

State: A’:12,
X:42, Z:12
Dataset: A’:12,
X:42, Z:12

Chat: Resilience to
Disruption
• Fully utilize the broadcast nature of Wireless channels
• Fully utilize in-network storage
• Fully utilize NDN’s two-way, stateful forwarding plane

11

Utilizing Wireless
Broadcast
• For each device which receives the signal: Does it care?
• In IP, determined by the address
• In NDN, determined by the name

• If one cares:
• Receive an Interest

• do I have data? Or
• should I further forward?

• Receive a data packet
• Have a matching PIT entry? Or
• should I buffer it anyway?

12

Decision by the
forwarding strategy

Utilizing In-Network
Storage
• Receive a data packet but does not have a matching PIT

entry at the time
• May buffer it for future use potential
• May make the decision based on a filter on name prefixes

• When next time receives an Interest, either from a
neighbor node, or from a local app
• May find matching data in the cache

• Concept illustrated in the PLI slides

13

New Chatroom Creation

• Room manager chooses a name, selects members
• Informing the members of the new chat
• Notify each of them via a signaling Interest

• Notification encrypted using individual’s public key
• Pub-sub: Publish the notification data (for each member)

through an established notification namespace
• Everyone can sync or periodically pull this space

• Members can learn about each other’s latest data
production through State-vector Sync
• Sync Interest enumerates the member list

14

Integration of Existing
Applications
• Integration of existing applications can be done through

gateways
• Speak both IP and NDN

• Complexity of such applications depends on the nature of
the existing application

IPIP NDN NDN

