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Notional Tactical 
Network

• Two different chat 
groups
• Between the three 

ships
• Between the carrier 

and the troops
• Loss cannot be 

tolerated
• In order delivery is 

important
• Can tolerate some 

delay
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Chat Naming

• As part of the app design/configuration
• What to name:
• Chatroom
• Chat data produced 

by users
• Encryption keys
• Signing certificates

• App cares about who’s in the room, and what’s the latest 
data each has produced
• User locations may change over time.
• Direct end-to-end paths between producer-consumers may not 

exist
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Chatroom and Data 
Naming
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/Apps/Chat/Ships/

/Apps/Chat/Troops/

Global prefix Application 
name

User names: Mike, John, Nancy

Ship names: Ajex, Gain, Tide

Chatroom 
name

user name

/Apps/Mike/Chat/Troops/seq#

Chatroom name

Data name



Trust Anchor and Keys

• /Apps as the shared trust anchor
• Identified by a self-signed versioned certificate
• Cert name: /Apps/KEY/_v5
• Securely installed out-of-band into all user devices

• Every entity in the network has a cert signed by 
the trust anchor
• /Apps/Mike/KEY/_v13

• A user produces a chat-app key to sign data

• Each chat created by a room manager
• The manager creates key encryption (KEK)/key 

decryption key (KDK)
• Publishes and signs KEK

• /Apps/Mike/NAC/Chat/Ships/KEK/_v8
• Encrypts KDK with invited participants public keys and 

shares with them
• /Apps/Mike/NAC/Chat/Ships/KDK/_v8

/ENCRYPTED-BY/Apps/John/KEY/_v42
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/Apps/KEY/_v5

signs

/Apps/Mike/KEY/_v13

signs

/Apps/Chat/Ships/SYNC/_s11
/Apps/Mike/Chat/Ships/_v0

/Apps/Mike/NAC/Chat/Ships/…

Self 
signed

Chat group Manager



Managing Access Policies
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• Encryption policies using public key (KEK) – per created 

chat group

/Apps/Mike/NAC/Chat/Ships/KEK/<version>

/Apps/Mike/NAC/Chat/Troops/KEK/<version>

/Apps/Mike/NAC/Chat/Xyz/KEK/<version>

…

• Authorizes participants publishing encrypted version of private key (KDK) – per group 

and per participant

/Apps/Mike/KEK/Chat/Ships/KEY/<version>/ENCRYPTED-BY/…

…

/Apps/Mike/KEK/Chat/Troops/KEY/<version>/ENCRYPTED-BY/…

…
/Apps/Mike/KEK/Chat/Xyz/KEY/<version>/ENCRYPTED-BY/…

…

Access Manager

/Apps/NAC/PLI/Global/KEK/<key-id>



Example of Trust Schema 
for Chat
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User(Prefix, User) 
(:Prefix:<>*)(:User:<>*)<NAC><Chat>(:Group:<>*) <KEK>[key-id]

Anchor(Prefix)
(:Prefix:<>*) (:User:<>*) <KEY>[key-id]

/Apps/KEY/_v5

General Trust Model

Trust Model Specialization 
for the App

User(Prefix, User) 
(:Prefix:<>*)(:User:<>*)<Chat>(:Group:<>*)<DATA><>*

User(Prefix, User) 
(:Prefix:<>*)<Chat>(:Group:<>*)<SYNC><>*Sync data

Chat messages

NAC policy

User key

Anchor key



Chat: Security in Packet 
Delivery
• False Interest packet injection: protected by the group key
• Interest packets can be signed

• False data packet injection: mitigated by the built-in data 
authentication
• Signal interference: exhibited as packet losses
• Eavesdropping: mitigated by encryption as IP does today, 

but with automated key management
• With IP, one can use named keys at app layer but no easy way to 

distribute keys
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Chatroom: Simplify App Design via 
Dataset Synchronization

• Each user may produce input into the chat
• Text messages
• Image files (each file has associated metadata)

• NDN Sync keeps every user informed of the latest input 
from all others in the same chatroom
• Tracking the latest data production sequence#

• Each user decides whether/when to fetch which piece of 
data
• If a new piece of data is an image file: the first returned data 

packet carries metadata to inform the user of the file size and 
other content specifics

9



Chatroom: Simplify App Design via 
Dataset Synchronization

• Different sync 
nodes can be 
defined in the 
topology.
• Carrier needs 

to sync data 
from both 
groups (same 
with the 
satellite node 
connected to 
it).
• UAV only 

needs to sync 
data from 
group 2.
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Node

Sync 
Node

Sync 
Node

State: A’:12, X:42, Z:12
Dataset: A’:12, X:42, Z:12

State: A:6, B:3, C:4
Dataset: A:6, B:3, C:4

State: A’:12, 
X:42, Z:12
Dataset: A’:12, 
X:42, Z:12



Chat: Resilience to 
Disruption
• Fully utilize the broadcast nature of Wireless channels
• Fully utilize in-network storage
• Fully utilize NDN’s two-way, stateful forwarding plane
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Utilizing Wireless 
Broadcast
• For each device which receives the signal: Does it care?
• In IP, determined by the address
• In NDN, determined by the name

• If one cares:
• Receive an Interest

• do I have data? Or
• should I further forward?

• Receive a data packet
• Have a matching PIT entry?  Or 
• should I buffer it anyway?
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Decision by the
forwarding strategy 



Utilizing In-Network 
Storage
• Receive a data packet but does not have a matching PIT 

entry at the time
• May buffer it for future use potential
• May make the decision based on a filter on name prefixes

• When next time receives an Interest, either from a 
neighbor node, or from a local app
• May find matching data in the cache

• Concept illustrated in the PLI slides
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New Chatroom Creation

• Room manager chooses a name, selects members
• Informing the members of the new chat
• Notify each of them via a signaling Interest

• Notification encrypted using individual’s public key
• Pub-sub: Publish the notification data (for each member) 

through an established notification namespace
• Everyone can sync or periodically pull this space

• Members can learn about each other’s latest data 
production through State-vector Sync
• Sync Interest enumerates the member list
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Integration of Existing 
Applications
• Integration of existing applications can be done through 

gateways
• Speak both IP and NDN

• Complexity of such applications depends on the nature of 
the existing application

IPIP NDN NDN


