

NDN Sync overview

Sync protocol design issues

Sync protocol for mobile ad-hoc networks

What is NDN Sync?

- New transport service for data-centric networking [1]
- Synchronizing the namespace of shared dataset for distributed applications among all participants

Do you have some chat messages for /chatroom1 that I haven't got?

Benefits

- Supports multi-party communication
 - Applications do not need to worry about individual participant addresses or how to reach them
- Desired data can be fetched from any node.
 - Resilient delivery under mobile & intermitted connectivity

- Encode the data set (names) into a compact form
- Participants exchange and compare the dataset state to detect differences

Sync Design Issues

- How to represent one's dataset state?
 - to make the comparison between datasets with least delay and overhead
- Pair-wise vs. group sync
 - Pair-wise: A − B, B C, C D, etc.
 - Group: every node tells all other nodes its data state.
- Sync names vs. sync data
 - Sync protocol may reconcile names only.
 - Individual participants decide whether or when to retrieve missing data based on local conditions

Example: ChronoSync/[3] Military Communications for the 21st Century October 29-31, 2018 • LAX Marriott, Los Angeles, CA

- Use hash as a compact form of one's dataset state
- Two-level digest tree
 - Each producer represented by <producer-name, seq#>
- Participants exchange root digest with each other to detect differences in dataset

ChronoSync (cont'd)

 Multicast sync interests to all participants in an app group

Limitation: cannot directly decode dataset difference from comparing digests

 Applying a few good engineering hints can work well under normal conditions

Sync for Mobile Ad Hoc milcom Networks Military Communications for the 21st Century October 29-31, 2018 • LAX Marriott, Los Angeles, CA

- Challenge: Intermittent connectivity with mobility
 - Short-lived connections
 - Dynamically changing topology
- Need to rethink Sync design [1]

- State encoding
 - State vector [A:5, B:7, ...]
 - Carried in Sync Interest
- State change detection is achieved directly from state vector comparison [5].
 - Whenever one generate new data: send new state vector
 - Periodic transmission of Sync Interests as backup

MANET Sync [2]

- New issues in dataset name sync versus data sync
 - Not all nodes are connected at any given time
 - Not all nodes fetch all data
 - One may learn the name of a new piece of data from neighbor which does not have the data

Solution-1: only inform neighbors the 3. C would keep names if one has the data State: A:6, B:3, C:4 requesting B for A:4 Dataset: A:3, B:3, C:4 **Solution-2**: engineer the networking which B doesn't have with data repositories to increase data 2. mismatched state/dataset gets propagated availability State: A:6, B:3, C:4 Dataset: A:3, B:3, C:4 1. B didn't fetch all of A's data before connection broke State: A:6, B:3, C:4 Dataset: A:6, B:3, C:4

- Transport layer service for NDN: dataset name reconciliation for distributed applications
- Represent the dataset using a compact format over data names
- Exchange dataset state to detect missing data names
- Implemented in libraries

Join the NDN session Tuesday afternoon to learn more details: "A Brief Introduction to NDN Dataset Synchronization"

Further reading

- 1) T. Li, W. Shang, A. Afanasyev, L. Wang, L. Zhang, "A Brief Introduction to NDN Dataset Synchronization," in Proceedings of MILCOM 2018, Oct. 2018
- 2) X. Xu, H. Zhang, T. Li, L. Zhang, "Achieving Resilient Data Availability in Wireless Sensor Networks," in Proceedings of IEEE ICC, May 2018
- 3)Z. Zhu and A. Afanasyev, "Let's ChronoSync: Decentralized dataset state synchronization in Named Data Networking," in Proceedings of IEEE ICNP, 2013.
- 4) W. Fu, H. Ben Abraham, and P. Crowley, "Synchronizing namespaces with invertible bloom filters," in Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ser. ANCS '15, 2015.
- 5) W. Shang, A. Afanasyev, L. Zhang, "VectorSync: Distributed Dataset Synchronization over Named Data Networking," NDN Technical Report NDN-0056, Mar. 2018
- 6) M. Zhang, V. Lehman, L. Wang, "Scalable Name-based Data Synchronization for Named Data Networking," in Proceedings of the IEEE INFOCOM 2017, May 2017
- 7) M. Mitzenmacher, "Compressed bloom filters," IEEE/ACM Transactions on Networking (TON), vol. 10, no. 5, pp. 604–612, 2002.